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Abstract

‘1’his paper clescribcs  a new algorithmic paradigm for solving problems where a
model is extracted from or fit to data. ‘1’his paradigm has numwous  applications,
particularly in coml)uter  vision. 'l'llcllewr  I~:irac]iglll  iscallcd  ~i(J~~i  (~)lolloutlcccl  “rud-
der” ) for Itccognition  Usiug L)ccomposit  io~l aud ltandomimtion. The main components
of the ~)aradigm  are the decoml)ositionof  tlie problc~~l irlto many smaller subl)roblems,
the usc of randomizationto  limit tllc numimof  slll)~)rol)lcIIlstll:lt  must bcexauli~lcd
to maintain high accuracy, and tile useof peso s~mx analysis tcchtliqucs  to solve each
subproblcm.  We show that,  in general, this ~)aradigm has advwtagcs over l)rcvious
methods. ‘l%c application of these techniques to ol)jcct  recognition, extraction of geo-
metric l)ril~litivcs,  robust regression, and motion scgmwtatiou is discussed.

1 Introduction

‘1’hc gellcrate-alld-test paracligm  is a popular strategy for solviIlg model  nlatching  problems
such as recognition, detection, and fitting. ‘lhc basic:  idea of this paradigIn  is to generate
a hypothetical solution using the minima] aII1outlt  of information and then test the quality
of the solution. ‘1’his  is repeated for many hypothetical solrrtiolls  and the best solution(s)
arc kept,  if they IIlcct SOIIIC criterion. ExaIILplcs  of this tcc}lnique  include RANS.AC  [7] atld
the aligI1mcnt  method  [12]. A competing paradiglll  based 011 the Hough  transform also
generates hypothetical solutions using IIlillilnal iIlforlll~ation, but rather than  testing each
so]utiou separately, the testing is performed by aIlalyziug  the locations of the solutions ill
the space of possible model positions (or po.scs). ‘1’his is oftcIl, but not alivays, accomplished
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scrvicc by track narnc,  tradcluarkj xnauufacturcr,  Or otllcrtvisc, does not cmlstitutc  or ilnply its endorsenmut
by the United  States ~ovcrnnlc[lt,  or the Jet propukion  ],a~mratory, California lrlstitutc of ‘1’ethnology.
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through a clustwing  procedure. ‘1’ho large clusters in the Imse sj)ace indicate goocl model
fits. We call techniques that, examine the pose space for sets of col~sistellt  lnatehes aIIIOIIg
all hypothetical matches HozL.qh-basm’  771et/lods. k;xalllplcs  include  ~’ar-iants  of  the Hough
trallsforlll  (sec[13,  16])a11Cl  ~) C)scclustclrillg(  [:.g. [25]).

In this paper, a llew paradigm that, gcncralizcs and extends previous \vork on model  fitting
[20,22] ispresented. Tllis~Jar:lcliglll  clr:l\\rs  icleL~s iltlcl:~[l\z~l~t:  igcsfrc)lnl jotllt}leg  e1lerate-a1ld-
test paradigm and the Hougli-based paradiglrl. PVhile  the underlying matching technique
used is to examine pose space for sets of collsistmt  matches like a Hough-based  method, the
use of problem decomposition techniques allows this class of algorithms to be vimved  also as
gellcrat(:-all[ l-tlcst  algorithms, where the iuitial matches consist of data that is insufficient. to
comtrain the model position to a finite set of ~)ossibilitics (even for errorless data) and these
initial matches arc tested using pose space analysis techniques in the suljspacc of the pose
space that is consistent with the initial lllatJches.

‘l’he basic s{eps of the new ~m-adigyn  are as follo}vs.  h’irst, the problell)  is dccolllposcd  iuto
many small subproblcms.  (.4 Inethod for perforllliltg this dccompositio]l, in general, is given
here.) SCcond, randomization is used to select  a subset of subproblcms  to be examined while
maintaining a lotv rate of failure. ‘1’bird, the sull~)roblcms  are solved using some parameter
space analysis technique. WC call this IICW ])aradigIIl  l{UDI{ (prolmullced “rudder”), for
Recognition Using Dccollll)osition  and lt:lll(lc)lllixt~tioll.

In general, t)hcsc techniques test fc~vcr  hylmthesm than  previous gcllf:rt~t[:-al~(l-test  meth-
ods, ~vith a test phase that is no more mtl~)lcx. In additioll,  the decomposition of the
problcm alloivs  each of the subproblcmls  to exal[liue  a IIIUCh  smaller ]mrametcr  space than
the Original  problem and this OftCIl  allow’s the error ill}lercut in Ioca]ixatioll  proccdum to bc
propagated accurately ancl cfiicicIltly ill the IImtchiug  process.

‘i’his algorithmic paradigm has a tremendous Ilumber  of applicat,iolls.  lt cau bc applied to
csscwtially  any problem ~vllere  a model is fit to cluttered data (i.e. \vitll outllim  or multil)lc
models present). WTc discuss all exalnl)lc  a~)l)licat  ioxl of tllesc  techlliques, ~vhere  parallel lines
arc cletcctcd  in edge images, iu detail. Several practical issues arc examined with respect to
this application. I’rcvious application of the l{UD1{ paradigln  to ol),jcct recognition [20] alld
curve detection [22], as Jvcll as IIlcthods by which l{l; L)l L can bc alJplied to robust, rcgrwssion
and Inotjion scglll[!lltlat)ioll,  are summarized.

‘lhcre  has bccm significant, previous \vork coInl)iIlillg Hough  tralAorlll  techniques and
IaIldOIHiZatiOIl  [’2, 14, 15, 26]. of particular ilitermt is tjllc  ~vorl{ of Ijcavers  [15], who, ill
adclitioll,  considered suljl)rol~lcllls wllcre a single l)oillt was used to place a collst)raint on
the allmvable  trallsforlIl:iti~>lls. Ho\vever,  this dots Ilot achieve the full dccollll)osition  of
tlhc problem and does Ilot halIdlc localizat  ioIl error robustly. I{U1)R  yields considerable
illl~)rc>\’f;lllclltj  over this nlel hod.

2 A general

‘1’hc  class of prol)lelns
fit to a set of observed

problem formalization

th:at NY2 attack using  IIUDI{ arc those that require a Inodel  to bc
dnta features, ~vhcm! a significant lmrtioll of the obscrfwl  data may
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bc outliws  or there  may be multiple models prcscllt  in the data.
.gwcral, be fc)rmalized as follows.

Given:
● M: ‘1’he model to he fit. ‘1’his  mode] IIIay be a SC( of distinct
object recognition, or it may bc a paraIrleterized  IIlanifold  such as
gmrnctric  ~mimitivc extraction and robust rcgrf!ssioll.

‘1’hese  problems can,

fcaturm  as is typical
a curve or surface, as

in

in
ill

. D : The data to match.  ‘1’his data consists of a set of features or measurelnwts,  {d], ,.., Jd},
that have bcwn extracted, for example, from an ilnagc. I’or simplicity, JVC assulIle  that all of
the data features are of a siIlgle type, but, this restriction call be easily relnovcd.
● ‘T : T’he possible positio]ls or transfornlatjio~ls  of the model. ‘lhis pose space is a (possibly
uIIljouIdwl)  parameter space in which the model  Inus{ lie. W’e denote individual transfor-
mations  in this space I)y T.
● A(M, D, T, T>~) : An acceptance criterion that dcterm~ines whether a transformation, T,
satisfactorily brings tlhc model into agyxvnent  \vit}l  a set, of data features, D. \\TC allow this

criterion to be a function of the set of data features alld the set of transformations to allo}v
the criterion to select tile single  best, subset, of data features accorylillg to some criterion or
to take into account, glol)al matching illforInat,  iolk.

Determine and report:
● All maximal sets of data features, 1) E D, for ~vhicl] t,llerc  is a tri~I]sfc)rlIlatic>ll,  T c T,
s u c h  i,llat the accc~)ta~lcc  crit,erioIl,  /l(&f, D, ~, 7, D), is s:itisfi(;d. ‘J’])(!  Stip(l];itioll  that, t hese

should be maxi Inal sets of data features meaIIs tlmt a set of data features should not be
re])orted if it is fully contained within anot)}]er set that is rcl)orkd.

‘1’his formalizat<ioll  is very general. Many conll)utcr vision problmns call be forlnalized in
this mallller, illcluding object recognition, geol[letric  l)rilllitive  cxtractiol~.  motion segmenta-
tion, and robust regression.

A particularly useful acceptance criterioIl is lined on ljouIldiIlg  the fit,tiIlg error bctwwm
tllc IIIodcl and the data. Let <7(M, 6, -T) Lc a fullctioll of t,hc ltlodcl, a particular data feature,
and a model position t)liat dctermillcs  ~vhether  tile model  at the sl)ecifiwl position fits the
data feature (e.g. up to a boulldcd error). W’C dcfiII(: C(J44, d, 7) =- I if t,lle criterion  i s
satisfied, and C(M, 6, T) = O, other~visc. A set of data features, D =: {dl, . . . . d=}, is said
to be brought, iIlto aligylnellt u]) to t}le error criterion  if all of t,lle individual features arc
Lrought, into alignment:

‘1’hc bouudcd  error accc~)tallcc  criterion slwcifics that a set of data features, II == {dl, . . . . Jr},
slIould bc rc~)orted, if tlIc cardinality  of  the s(It IIIcets s[lIIIe tllres]lold  (7 > c), there  i s  a
l)osit,ion of the model that satisfies (l), aIId th(’ set is Ilot a sulmt of SOII1O larger sctl that is
rc])orted.

‘1’his bounded error  critcrio]l call illcor~)oratc  llt)t only t 11(; locat  i~~ll of fcatllres, butt i n
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addition, other local iuformaticm  sucli as curvature, color, texture, aILd contrast. YVcight-

illg of the features can bc easily adde[i. lt callllot  incorporate global  illforlllatioll, sucli as
lllcall-sclllar(!-error  or l[;astl-xllecl  iall-of-s(lll:~  rcs. Howwwr,  l{UL)I{ is llot restrictwl  to u s i n g
this bounded error criterion. lIIdccxi, 111-JDll  has l)cc1l a~)~)lied  to ]east,-Inediau-of-squares
regression with excellent  results.

We Iiot,e that this bounded error critcrioll, as stated, dom not allo~v  the exclusion of
multip]e  data features matjchillg  a single model feature ill discrete models. Ho~vew:r,  this
exclusion is easy to achieve ill practice, if desired. ‘1’his also yields a technique that maximizes
the nulllber  of mode] features that are matched by data features, while excluding data
features froln matching l[lultiple model features.

3 Decomposition into subproblems

L,ct us call a set of matc}les bet~veell  data features and the mode] a 7rLatch7hfl. ‘1’hf.7 generat,e-
alld-test  strategy and really  Hough-based strategies solve for hyl Jothet, ical model positiom
using  matchings of the minimuul  cardillality  to constrain the lIIodcl  I)osition  UI) to a fiuitc
alnbiguity  (assuming errorless features). W’c call the match illgs that collt,ain this minima]
amount, of information the  7rli7Li7r2al matchitly$ and Jvc dwote their caldiualitly  k. lt should
be noted that wc consider, ill particular, tww types of model. ONe type of model is a set
of discrete features sil!lilal to the data fwturm. ‘1’}1(! other  is a ~)aralll(:t,erized  lnodel  SUCh

as a curve or surface. WJhcll  the model is a set of discrete features, t,hc Illinilnal  matchings
specify the mode] features that, match efich of the data features in the minilllal matching
and JVC call these ezplicit 7fu Ltchi7Lgs.  Othcrwise, the (lata features are lnatched implicitly to
the ~)aralncterizcd model and NW thus call these i7/~pticit  ??l(LtC/li71$%

3 .1  RUDR a p p r o a c h

111 tlhc g(:ller~lt,e-:111(1-t(;st  ]mradigm, t}lc  lnodcl  ~)ositiolls  geIlerated using, tllc Inillilnal  mat,ch-
ilgs arc tested  by corllparing the model position to Lhc data to dctcrlnillc if it results in a
good fit of the llLodcl  to the data. 111 Hough-lJased  lllethods, it is t~’])i(al  to determiuc  t,hc
~)ositio~w  of the lnodel  that, align  each of the ~niIlilnal  matchiu,gs  and detect, clusters of these
posit, ions in the parameter s~mcc that descril)cs  t}lc set of lmssiblc  model  ])ositiolis,  but, lllauy
otllcr pose space almlysis  teclllliqucs  call be used (e.g. [3, 6, 11. 13, 1 7]).

!l’hc approach that \vc take in the }llJL)It  lxaradiglu dra~vs upon both g[:ll[:rt~tc-alld-test
techniques and Hough-based tcchuiques. ‘1’he ulldm]yiug lnatchillg  method  Hlay be ally one
of several pose space analysis tcchlliqucs  iu the Houg}l-basccl paradiglll,  hut unlike previous
Hough-bascxl  methocls,  the problem is subdivided into nlany sluall sul)proljlcmsj  each of
~vhicll  cxalnines  a subset of the milliulal  matchings. ‘1’his  cl[:c(>llll)ositiClll  is achieved by
colwidcring sets of clistiuguishcd  Inatchcs l)ct~vcell  data features and the IIlodel. l\7e call
tlhcsc sets of llmt)chcs  distinfluishcd 711Jatchi71gs and t he data features t hat arc matched in
such a lnatchill.g  are called  a (li.$ti71g2Li<$  lLt:(l set. Eadl sul~problclll  collsidcrs  only  those model
l)ositiolls  that are collsistcllt  \vit}l the distinguished lllatcllill~.
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‘1’hc car(linality  of the distillguisllml  Inatchillgs nlust, be sInaller than the cardina]ity  of
minimal matchings for the ItUDIl  paradigm to be useful. W’e }vill  thus have a set of minimal
matchings that includes each distinguished lImtchiIlg. ‘1’he restriction of each subproblem  to
those positions consistent with the distinguished nmt clliIlg  is achicvwl  by coIlsidcriIlg  only
those minimal matchings that, include tllc [iistiIlguisllcd  IImtching  in the subproblm.

‘1’his clecomposition  of the problem allmvs these tdlniqucs  to be vimwd as a new class of
generate-and-test methods, \vllcre distinguished nmtclli  Ilgs (rather than minimal matchings)
are generated and the testing step is performed using a pose s~)ace analysis method (such
as c]ustcrillg  or pose space equivalence analysis) rather than  colllparing a particular model
position a,gainst  the data.

W’e should note that if some special structure is required ill the Irlinimal matching to
suitably constraiu  the Inoclcl position (such as coliucarity),  W@ must,  take care to select
suitable distinguished matchings. However , such special structure is not required for any of
the applications examined here.

3.2 Equivalence of formulations

Let’s consider the effect of this dcconlpositioIl  of the ~)robleIIl  oIl the matchings that are cle-
tected  by a system using a bouIIdc!cl  error critcrioll,  C:(M, d, t), as dcxribed  above. For now’,
IVe assume that WY2 have sonic Inethod of determining ~)rcciscly  those sets of data features
that should be reported according to the bounded error acceptance criterion. ‘1’he impli-
cations of performing nlatlchiI1g  only approxil~ultlcly and tho use of aII acceptance criterion
other t]lan the boulldd  error criterion am discussed subsequently.

Proposition 1:
l’or any transforInatioIl,  T C T, the follo\viIlg stat (’nleIlts  are equivalent:

1. ‘lr:lllsfc>rllliitic)ll  7 hriags  at least x data features iIlto aligIII1leIk  Jvith ttle IIlodcl up to
the error criterion:

~ C(M,L5T) > z
C7c ‘P

2. lrtillsf(~rlll:ltioll  T brings at least, (~) sets of data features Jvith cardillalit,y  k into align-
ment with the model  up to t}le error criteriou:

3. F’or aIly distilqyishcd  set, g = {Jo, . . . ,  ,} ttlat  is brought, into aligylnlent  with the
nlode]  u~) to the error criterion by T, there are (~” ~) nliIlilIml nlatchi]lgs of distinct sets
of data features coutainillg  the distinguished set that, are brought into alignment, up to
the error criterion by 7.



Proof :
‘1’hc proof of this propositioIl follows directly froIIl Cmmbillatorics.  FVLI prove (a) S[atcmwt

1  imp]ics Stkrkmcnt  2, (b) statement  ‘2 im])]ies Statemwlt,  3, aud (c) StateIIlcnt  3 imp]ics
Statemwt  1. ‘lhus, the statcInents  arc equivalent.

(a) F’rom Statemeut  1, there arc at least ~ data features with C’(A4, ~i, T) == 1. lVe can
thus form at least (~) distiuct  sets of these data features with cardillaiity  k. Each such set
has r]~= ~ C(M, Ji, T) = 1. ‘1’hm matchings thus contribute  at, least (;) to the SUUI.

(b) ‘1’0 form the (~) sets of data features that, are brought, iuto aligllIIlcnt  with the model,
wc must have z individual data features satisfying L’(M, , di, T) = 1. (If there  were y < z such
features tlhcu \ve could  only form (~) Ininillml  llmtcllill~s  satisfying Equation (l). ) Choose
auy subset), ~, of these matches of cardiuality  g. F’orIIl the (~:~) subsets of cardinality  k – g
that do not include auy feature iu ~. Each of tlhcsc  subsets when conll)iued  lvith  ~ forms a
Iniuimal matching that is brought iuto aligIIIIleIlt u]) to t}~c error criteriou sitlcc each of the
individual features satisfies C(M, &z, T) = 1.

(c) F’rom Statement, 3, the g data features ill the distinguished Illatchiug are broug}d into
alignrnmt  up to the error  critlerioIl by 7. 111 addition  there must exist  x – g additional data
fcatlures that arc brought  into alignulwt  u[) to tile error criterion by T to form tllc (~~)
subsets of carclillalit)y k — g that are brought, iuto aligaulwlt up to the error critcrioIl by T.
‘1’bus, in total, there  must be g + x – g =Z z data features that am brought into alignment
u]) to the error criterion by T. ❑

‘-1’hc implication of this result, is t}lat, if }V(I arc illt crested iIl fiIlditlg lnodel  positioIls  that
briug x data features iIltlo alignment  }~itll  the IIIOde13 it is equivalent to fiudillg  (~) sets of
k data features that, arc brought iuto aliguIneut tvith the IIIodel, aIld it also is equivalent to
fixldillg  a sufficieIltl  lIumbcr of such sets that, snare soIne distiuguistld  set tlIatj  arc brought
iuto alignment. ‘1’bus, as lolIg JVe cxaIrliIle at l(:ast OIIII distiIlguishd  set that, bclollgs  to each
of the IImtchiIlgs  that should k re[)orted, tllc stral [Igy of clecolll~)osi[lg  the ~>rol)lclu  into
sul~prol~lems yields  equivalmlt  results to cxalllilliug  the original probleII1.

Notlc that this thcomll  is stated iu termls of clisti Ilguishcd  sets, but, for explicit matches,
tllc subproblems  examine distiuguishcd  matchiugs. ~vhere the matc}l for each data feature
is given. E’or each distinguis}led  set that is considered iu this case, the matchiu.g  algorithm
exaIni Ilcs all possil~le  matlchiugs  for the distiuguishml set to wsure that Jve examiue a correct
distillguished  nlat thing if the distiuguishd  set Ix>lollgs to the model.

N’oiv, for practical rcasous, \ve may not \vis}l to use aII algorith]n  t}lat reports exactly those
IIlatlchi Ilgs that satisfy the error critcrioIl, sillcc sucl I algorit,lllns  are oftcll not, cfficientj.  W’hcu
WK! usc an approximation algorithIn,  I)rol)ositioll  1 is I1O longer- ])recisel> corrcd.  Just as the
use of aIl approximation algorithm introduces the ])ossibilit,y that }Ye do not fiud the best (or
all) solutions, it iut,roduces  the possibility tl]at, exal[lillillg  subsets of lllil]illlal  IIlatclli  Ilgs, as
dcscriberl  above,  does not, yield the saIIlc results as cxalIliuiIlg  the full set, Ho\vever,  empirical
cvidwce  suggests that, the rxaminatlio~l  of these sul>~)rt)l)lcIIE5  yields  superior results ~vhml au
a~)l)roxinlation  algorithm is used [20, 23].

We call also uw these teclltiiqucs  witlll  acceI)taIlcc criteria ot}ler t}lall III(I l)ouIIcled  error
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criterion. With other criteria,
if all approximation algorithln

I}IC thcorwu  is also, usually, OIIIY
is used to detect  good lnatchill.gs,

a~)~)roxillmtely  correct, but
it often yields good results.

E’or example, an ap~)licatioll  of these ideas to lctlst-lllf:cliall-of-scl~l:lrcs  regression has yielded
an approximation algoritllln  tllatj  w’as l)rovably  accurat c with high pro bal~ilit,y,  }vhilc  previous
ap~)roximation  algorithms do not have this propc!rty  [18].

3.3 Error sensitivity

Hough-hasecl  mct,hods  }lave bell  criticized for their error sensitivity  [8], but,, frolll this anal-
ysis, it is clear that,  if exact matc}liug  mettlods  are used to solve t}le IIUL)ll subproblems
(or well the original problem), then 110 other Illetllod  cau acllievc sul)crior pcrforlllance with
rcs~mct  to the boundec]  error criterio~l,  since wc rel)ort, exactly t,hosc lllatchings that satisfy
the acceptance criterion.

Iu fact, Hough-based  lllethods are, itl gcl~eral,  sul)crior to gc:llcratc:-all[l-test lnethods  tvith
rm~)cct to localization error. Initially, gell[:rilte-:~11(1-test  lllcthods ilxl~)licitly  assumed that
there \vas no localizatioll  error in the lllillilllal  lnatcliiug  used to dcterl[lillc the hypothetical
mode] ])osition [’7, 12]. Iu this case, Iocalizatjioll  error causes  correct Inatclles  to be missed.
L1ore recently mct}lods  have lxxm dewloped  to pro~mgat c local izatioll  error ill the testing
stel) [1], but tllesc Itlctllods do llot clMute glolml consistency of t,hc Illatclles. ‘J’liwe t,eclllliqucs

result iu a significant) uumlmr of matches occurrillg due to ralldom accumulation of possible
nlatchcs [9]. \~hcIl all accurate pose aualysis tcc}lllique is USN], a Iiough-based  method can
~)ropagate  localization error ~ffit)hout  rosultillg in false ~)osit,  ivm].

3.4 optimal matching cardinality

W’bile  distirlguishcd  matchillgs of ally Cardillality  could })c considmwl,  \vc must balallcc
tllc cmrl~)lcxity o f  tllc sul)])roblarls  ~vitl( th[! Ilululj(:r of sul)~)rol)lcllls t}lal arc cxaluincxl.

lucmasing  the cardinality  of the distillguishml  lImt(:}lillg is bwcficial  UI) to a I)oint.  ‘1’his  is
because t}lc  larger  the disti~lguislicd  Iimtchillg  is, tllc luorc  constraint ~vc have orl the positioli
of the lnodc],  alld thus t)hc sillll)lcr the suhl)roljlclm are to solve. 011 t,lle otlller hal~d,  as the
cardilmlity  of the dist)illguishcd  Iwrtchillg  is incruascd,  the nulllber of su})prol~lcl~ls  that must
l)c examined to rnaiutaill  a low rate of failure also illcrcascs.

Our analysis below iu %ctioll  5 shows that the dccreasc ill colll~)lcxit~r  caused by in-
creasing the cardinality  of the distingllished mat c}lillg  is great cr thau  t,lie illcrcase  caused by
a  greatlcr nulllljcr of sul~~)rol)lcmls.  NOtc thou~h, tl}lilt lIo lll:itter }Io\Y l a r g e  t h e  cardillality

of (he dist)ingrrishcd  lnat)chillg  is, ww lllust allvays  t(st, each Illatchill.g colltaillillg  the distlin-
guishcd  matching  allcl  ~at least olIe additiolml feature Inat,cllillg to d(:terlllillc  the quality of
the distinguished matcllill,g.  Since it is Ilot lmrt i(:llliil’ljr useful to exallliIle matchiugs  that, are
larger than the ulillimal matcllilqyj  tllc o~)tilllal  cardillality  of lllc distinguished lnatchillg is

11 [w: }ve dcfIIIc  a f a l s e  I)ositivc  as a I[latch tliat does llc)t ~llwt tile acceptall(c  critmiorli  but  t h a t  i s
lCI)C)rte[l, I’21t]lCl  thZIIl  a Il)ak}l  tll:lt  k Il~t ZII1  iIIStEIIIC(’  Of tll(,  lllo(k~].  ‘1’hUS  110  If121kll  t]l~t  Ill f.i[it  S th(’  a(’CfJ])t2Ul  C~

criterimi  is considerd  to k a false positive,
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k – 1. We thus collsid~:r  distilwisllcd  Illatcllillgs  Ivitll  cardinali(y  g = k – 1 for the balance
of this paper.

4 Solving the subproblems

~ow, \$’C InUSt USC S0111[! lllCthOC]  tJO SOIW Cad  O f  th(~ SUb])rOb][!IIIS that arc [XaIIliIld.  ~~~
caIl,  iu kid, use any method  from the litwatur(!  that determiI]m hotv ]nany lllatchillgs of a
giwm cardiuality  call be brought into alignment  with the nlodel  at, a particular position. ‘lhis
includes the standard }listogrz\rllrllillg or clustering nlcthocls  used ill the l-lough trausform  and
pose clustering aud also rwwntly  dcvelolJed  l)ose cquivalalcc  analysis t,eclltliqucs that allow
localization error to bc l)rolmgated accurately [3, 6]. Note that the histogmmmiug  techniqum
require linear time in the number  of Inakhiugs  exalniued and that Breucl’s  experiments
indicate that  his techniques call operate  in linear exl)ectcd  time iu the number  of matchings
[3], so we can, in ge~lwal,  pmforln this step cfficieIltlJ.

Each subproblcm  iu RUDli  cau bc solved efficimtly,  not, oNly because fefvcr matchings
arc collsidcrcd t)ha Il iu the full Imblelllj  but also Lecause a sIIIall portiou  of the parameter
space is examined. Each sul)~)roblelll Inrrslj collsider  only the ~)ositliolls  of the model that
briug the distinguished lnatchillg  iuto alignI1lellt u}) to the error critcrioll.

If it is assumed that there  is no error iu the features iu the distiuguishcd  nmtchillg, then
cad) sul)problem needs to colwider only a sul)-IIla Ilifold of the parameter sJMce. lU general,
if there are p trallsforlll:itioll”  ~mranlct)ers and eac}l feature match J’iclds b constraints on
the transformation, then a sul)problmn  ;vhcrc t}lc distinguished lnatchings  have cardiuality
g examines only a (p – gl~)-(lilllellsicJ1l:ll  sulj-lmuifold  of the trilllsf(Jrlllatioll  space in the
errorless casc2.

No\v, since each sul~ljrol~leul  is concerllw] with oll]y a sulj-llmllifold  of the t,rallsformatioll
s~)acc,  \ve cau ~Jarallleteriz[’ tile sul)-l~lallifold (Ilsillg ~) - {/b ~)araltlet ers) and ~)erforlxl alla]ysis

iu this lower climensioual  space. A particularl~  llscful case is ~vhell  the resulting mauifold has
only one dimension (i.e. it, is a curve). IN this case, tllc subproblcln  cau bc solved very simply
by parameteriziug  the curve ?alld fiIKlillg good lIuitc}lilqy  by }listc)grt\llllllillg  (or determiuiug
~vllich  segments on tllc curve are consistellt tvit II lllally IIliIliuml lllatchill~s  [22].

Note that this formulatioll  of the subprol)lcllls  as collsidcrillg  a sulhlIlallifold  of the tralls-
forlnation  space allo~vs  tllc us(: of lllctllods that  dct(’rlllillc  l)o~v IIlan~ ill(lividual  features are
brought into alignment wit h the lllodel  up to the error critmiol~,  sillcc \ve have removed the
~)ortiolls of the trallsforlllatioll  space that do llot agr(:c ~vitll t}lc (Iistillgllisllcd  ]Ilatcllixlg bciug
brought into aligllmcnt.  %mle  exaull)les  of suc}l  llletllods are the l;ast Hougll  ‘1’rausform  [17]
and the nlulti-rc:solllti(~ll  para]ueter  SIMCC  search of lluttenlocher  aud Iiucklidge [11].

\~’ileIl  \Yc collsider  tllc local ixatioll  error ill t}lc fw~tllrcs  of the CIist,illguisllcd xllatclling,  the
sul~~)rol)lcms  must (at least illl~)licitly) colwider  a larger space thau the lllanifo]d  dcscril]ed

1a )ove. ‘1’hc suljproblcnls  arc still lnuc}i  easier to sol~’e, since t,hc trallsfc)rlllati(>lls  usually do

2rJ’hcw arc  exceptiolls  to this rule, but  they do llot Caus(’ serious ~) IwblcIIIs  [24], arid  IV(’ dc ILot  cons ider

them  lllw.
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not stray far from t~lc Inanifold  t}lat they lnllst  lic ol) ill the errorless case. A technique
that is useful in this case is to project the set, of tlransforlllations that, are consistent with
a minimal matching  up to the error criterion onto tllc manifold that, results in the errorless
case and then  perforIn clustlcriw  only in the ]):lrtlIIl[!t(:riztltiC)Il  of this Illallifold  as discussed
above [22].

!5 Randomization and complexity

A deterministic iln~)lel[~clltatioll of these ideas that, exalniues each possible distinguished
matching with the appropriate cardiuality  requires O(T~~)  running time [24], ~v}lcw n is the
number of possible matches bctwccn a data feature and the model. N’hcn explicit matchings
arc considered, n = rml, where TII is the numbcw  of lIlodel features and d is the number
of data features. \lThcw ilnp]icit matchings are considered, 71 == d. Such a  deterI1lilliSti~
illllJ1cl[lclltatioll  perfornls  IIluch  redulldallt  wwrk. ‘1’here arc lnauy dist inguishcd  sets that are
part of each of the large collsistcnt matchillgs that, NW are swkillg. We thus find each maximal
matching many tinlcsj once for each distillguisliml  set that is cont)ailled in the maximal
matching. YVe can take advalLage of this redulldallc~ through the usc of a randomization
technique to limit the nulnl.)cr of subpr~ol>lcll)s  tl)at \vc must,  cxallliuc  }vhile  llmilltainiug  a
low probability of L3ilure. ‘J’he usual Il]cthod by ~vhicll  this is acconll)lisl~ed is to assulnc that
some minimum numljcr or sollle minilnuln  fraction of the data f(’atures l)elollg to the model
that Jvc are considering. lf the llulld~w or fraction of data features that bcloug  to the lnodel
is not, large enough, thml \vc allow the nlgorithlll to fail. ‘J’llis is rcasollal)le  siucc the mode]  is
wry difficult to find if the llu]lllx:r of data features tllal  belong to it is small and the model
is not perceptually significant< if the fractioll of data features that bcloIIg  to it is small.

5.1 Implicit  matchings

Let’s first consider the case of inlplicit, mat,chillgs  (i.e. ~vhcrc  the model is a paramet)erized
nlanifo]d). We use the assulnptiou  that some fraction of the data features b(?long to the model
and determine the nulIIl~er  of ralldolll  (iist)inguishe(i sots that, nlustj be ewniue(i  to achieve a
fixeci ~)robaljility  of exalnillillg  at least ollc (iistinguisllmi  set that colllpletely  belongs to t}le
mmicl.  Let c bc t}ie minilnunl  fraction of (iat,a f(!aturm that, must l~elong  to the Inociel  to
maillt)aiu  a low rate of failure. I< ’or a (iistillguishml  set ~vith  cardillality  g < k, tile probability

that all of the data features bclollgs  to the lIlo(iel  is (since ~vc saInp]c  tho (iata features
~vithout,  replacemclll ) at least:

~ fd -- i
?~l ‘- 1[ ~

11

As ttie number of (iata features, d, iIlcrmscs, this ~)robal)i]ity a~)proaches  d, an(i is thus

asymptotically ill(i(:~)(!xl(if:ll(  of d. ‘1’}1(:  probability t}latj t trials faii to selwt  a correct ciis-
tinguisheci  set can he boullde[i  by f)t < (1 ‘-  ?)l)L. \\”(: call no~v select an arbit rariiy smali
probability of failure, ~, a~l(i  (icterlnine the llunlher of trials llwcssary  to ellsurc  that, the



probability of failure is no larger  than -y. ‘1’his  yields:

If Jv(!
0), thcxl

‘~ +T,,l)
approximate pi by e~ and further use! the a])l)roximation:  111(1 +- 0) % a (for small
the number  of trials we must,  examine is apl)roximatcly  ~- g In ~. hTote that, this is

independent of d. ‘1’he number  of trials that, nlust be cxaminecl  is 0(1) for constaut  y, e and
g. Each trial requires O(d~” ‘) time (for g < k), sitlcc them are (~. ~) millimal matfc}limgs  that
include the distinguished matching, atld each trial CaII be performed in linear time in the
number of minimal lnatchings  that are examined. \\Je thus lvant g to bc as large as possible,
but \vc must  have g < k, so we use g == k – 1 as mcmtioncd  previously ill %ction  3.4, a n d
we achieve a ruIming  time of O(d). A similar analysis for generate-al~d-test  Illcthods also
yields a running time that is O(d).  However, IIUL)It still requires fewer trials (by a factor of
approximately ~).

5.2 Explicit matchings

For the case of explicit, matchiugs,  ww usc the assulil~)tioll  that some lllinilllum fraction, ~,

of the model features appear ill the data (i.e. that, at least [jTnl data features belong to the
mode]). If the fractiml  of model fc!aturcs a])pcariug ill the image is LN:lmv  j, Jvc allow the
algorithm to fail. ‘1’he probability that, a sam])le of g < k data features colnes entirely from
the model is at least:

If }Ye require
froI!} tllc IIlc)clcl

(~)g  and using

g .fm --7
PI = ~1  (I

il

tlhc probability of not, maIIlilliIlg  a single  saINplc of data fetltures entirely
LO lJC 110 1110~(:  tllall  ~, \Vf! agailk  llil~”(>  t  > *. .AIJ~Jr(>xil~latillg  pl by

the alJ~)roxilllatioll  ltl(l  -10) X o yields:

h’otlc that for each of the sets of clata features that arc sallll)lcd, Tve lllust consider matclliug
the data features against [!acll possible set, of Ino(lcl features of the ap~)ropriatc cardinality.
l’or each trial, we thus cmwidc!r  O(Tnf)) sets of model features aI1d mwrall Ive consider O(dg)
distinguished matchiIqy  since the nul~lber of trials is 0((~)~) for constant  -y aI~d ~. ATOW, for
e a c h  distliI1guishcd Inatchixg,  Ivc cx31ni  I:c tile O((IIId)k - ‘) lIlitliIual I[latcllillgs  t h a t  i n c l u d e

the distinguis}lcd matchi~l, g aIId sinm the ]msc analysis step CaII bc pcrforlllcd in IiIlear time,
the total time that, is required is O(mk- ‘dk) for g < k. OIIce again. Jve tvautj g to bc as large
as possible, which is g = k — 1, aud this yields aud 0(7/talk) algoritlL1n.

A similar analysis for F;cll[)rate-all(l-tc:st Illcthods yields a collll)lltatioll:ll  coluplwity  of
0(77uF’ ‘), if each of the 0(7Jd)  additiolla] feature llh\tches is teste(l for each distinguished
Illatchillg.  For lIMtIy ~)roblellls, t h i s  call I)e i[lll)rovc[l  if ~ve ~rc OIIIY collcwlled  Ivith t h e

10



Ilulnber o f  mod[!l fcatur(!s  t h a t  arc  I1latc}l(!d  by aIl illlag[! f(!atur(!. Ho\ve\Fer,  this does IIot
allow the exclusion of the case }vhere llmltli~)le  mode] fcatums Illatctl a siIlglc iIIlage feature,
which l{ UL)li call achieve without iucmsiug  t)h(: coIIl]Jlexity.

5.3 Intelligent feature selection

lfsor[lc  xllct}]od exists tosclcct  fcatum illtclligt:Iltly,\vc:caIl  illmrporateit  iutoNULIR.,  b~r
usillgtllislll[lt}lc)cl  tmse]ect distinguished lllatc}li  Ilgstll;\tar(  :111 orelikely  t,oyicld  good results.
An example is the usc of perceptual grouping tf!chlliqu[s  to select distinguished mat,ches  that
are likely to bclollg  to the saIIlc object [21]. Such Inc[hods catl be used both to rwluce the
complexity of algorithlns  ill the llUL)li paradigm aud to reduce t}le lilwlihood  that a large
I]latching is detected t}iatj  does not correspond to an illstauce of the model being sought<.

6 Detailed application example

‘1’his scxiion  walks through  the apl)lication of l{ ULIIt  to au cxaIm)lc problmn, the detection
of parallel lines in all image,  and includes discussion of th(! algorithltl dcsiy) aud implcmleu-

tation stages of the  apj)licat)ioll and considerat ion of tllc praclical issues illw)lved ill such all

al)~)lication.

‘1’hc first ste~) ill a])])lyi~lg the liI_Jl~Ii paradigm to a ])articular  problem is to determine
the model and the Lyj)c of data fcatlurcs  that \vill  be used. For the dckctioIl  of parallel
liuw, our model is siIIl~)ly a 1)21rtiIIl[!teriz[~[l  form of a l)air of parallel lines. I\’(’ use the! (p, 0)
]JaraIIlcterizatioll for the lowr Iilm (i.e. p = 2 cos O -t- y sill 0), aloug  ~vith a parameter, d,
describing the pcqmlldicular  distatlcc to tile secoud line. WC could usc csscIltially  auy set of
t\v(>-clix[leIlsi(JIlal  poiuts  as our data. We focus, howwvcr, 011 the edges detected  ill a digital
ilIlagc and wc chocw:  to use oriclltcd  edg[! I)oillts as our d:lta, sillcc a local oricIltatioIl (such

as th(! gradient) is avail al)lc from Inost edge detectors. (\\7e usc a ~’ersion  of the CaIIuy  edge
detector [5] to gwcrate the data.)

AText,  \vc must,  consider tile numb(!r of data fcatllr[!s  llwessar~ to collstraiu our mode].
III tllc noiseless case, t}vo orimll(!d I]oillts overcollst  mill t}lc I)ositioll  of a ~mir of paralle]
lillcs (assuming one poi~lt, lies on each line), while oIlc point is clearly iIlsuf[iciellt.  Our
nlillilllal  mat,chillgs  thus collsistj of ~mirs of points, Sillc(! this ovcrcollst  raius the IIIodcl, ww
call elilniuatc  many ~mirs  of poilltjs  ])rior to the pose almlysis  st,cl), as uo xtiodel  positioll is
collsistcmt  with them.

Our stlratcgy  is uolv to ralldolllly  saIIII)le  sillglc Jmiuts from the edge Iluip of au illlage
to be the distinguished set (or silnl)ly tile distinguished poil)t,  ill this case). E’or each such
salIll)led  poiut,  \Ye collsider lmirillg  it ~vitll  e a c h  othcu I)ossiblc I)oillt and detcrlllinc }vhich
~)airs could  feasibly ljeloIIg to a pair of parallel lines. I;or the ones that could, \ve perform
some pose space analysis  t,o dctermitlc!  if there is a sufliciellt,  nuull)cr  to output, a pair of
~)arallcl  lines in the inlage. A-otc t,ilat, lv(! lllllst,  ll(~t, only ~)c>rforlrl  this ~)osc) s~mce  axlalysis
to dctlerlniue  the ~)otelltlial  location of the othm li[][’,  ~vc lIlust also nmiM,ain  a count of the
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number  of points
in the ilnage.

~)aralle]  wit,ll t}leclistillgllis}  le(l  point. toensure  that both lin(!s are present

NTO}Y, l~o~\'sl~ould  ~vc~)crforlll  ourllc]sc: sl):~c;t:  i~llalysis  forcac}l [listillguis}~[  !(l~Jc)i1lt?  Here,
Ivc choose to use a boulld~!d error criterion. lf’ we kl~ow (or can estimate) th~! distribution
of errors, the error bOUMIS call 1)~ c~w:lI  l~y takiw tllos~ t~lat ~apt,llrc a certain  ~)er~el~tile
(say 95%) of all errors, o r  they can he cllosell elul)irically. W’e have empirically chosell
error bounds  of 1.0 I)ixcl in location ald f radiam ill oric!ntat ioll.  \Ve cau no~v project the
model  position (if any) consistent with a particular pair of oriented points onto tile manifold
consistent  the distinguished point, in the errorless cast!. Siuce tile distinguished point fully
collstrains  one of the lmallel  lim!s (in the errorless case), this matlifolcl is a curve in the
tllrce-clilIlellsiollal  ~)aralileter space that, call be parameterizcd  by the distance! from the line
givcll by the clistinfyisllcd  poillt. Note that this distallcc IIMy bc llegatliw,  since ww clo not
know ~vhich  of the lillcs, if ally, the ciistinguishcd  point, li(!s ON.

‘lo perform this  projcctlioll  for auy pair of J)oillts  that arc cxalllimxl,  ~ve comider  the set
of orientations that are consistent with both of the points UI) to tllc error boulldarics. Each
orientation in this set yields a distance  bctweell  the lmir of parallel lines. Wre obtaitl a rail.ge
o f  s u c h  dist<anccs  by cxalllillillg  the IIlinimulIl  atld ltlaximum comist[!ntj orielltation.  Notle
that, if the set of consistent  orielltlations  contains tlhf’ orientation of the s(!glllcllt  connecting
the poillts, the loww bould  OH this distanc~!  is the distancx! bctivecn  the poi]]ts. ‘1’0 this
range }VC must also add the error possible iIl tllc lmsilion  of the l)oi I~ts. ‘lhis final range is
our projection of the ~Iosc sIMcc that is consistent ~vitll the lmir of ])ointjs olkto tllc curve in
the parameter spacw yielded by the distiuguislled ~miut.

I\Te use these l)rojections  to count,  the Imllllmr of ~)oints that arc consistent ~vith parallel
linm whose distances frolll the line given l)y the dist ilqyishcd  poillt  are betlvc!cn discrete
intervals. We c}iose  the illl)ervals  to have a }vidth of one I)ixel. AN array of couutcrs of size
2(1 ,,,aT+ 1 is allocated to store values rallgillg  frolll d,,,~r to --d,,,,,r, tvhcre  d,,,,,r is the Inaximutrl
distance  bctmwm aIIy ~mir of ~mrallel  liues (aIId caIl ((:rtailll)” bc bouxldd  b)” tile d i s t a n c e
between two opposing corners of the ilnagc).  Nmv for etich range that is yielded by the
projcct)ions,  as clcscribcd  al~ovo, ww imm~lllcllt  the coullt,ers that corrcsl)olld  to values covered

by the projection. After the distinguished ~mint has }XX:IL  lIlatchcd ~vit}l each additional  point,
\vc look for peaks in t}lc  counter array. Note that this yields  a conservative technique that
provides an uplwr  bound 011 the nul[l})er  of ~)ixels  that, call bclollg  to a luodc:]  up to the
bouuded  error.

}\Jc a l s o  usc t h e  e r r o r  bounds  to deterlllille if Cacll  addi[iollal  l)oillt cxalllillcd  lies 011
the salnc l)arallcl lillc as the disiinguisllccl  I)oillt. If both ~)oillts  have  oricntat)iom that are
consistent ~vith beillg perl)elldicular  to the S(!gulcllt,  Letwwen the points (in }vhictl we must
also consider the localizatioll error), then the lmillts arc collsidc!red to bc ~)aralle]  up to the
localization error and the coulltcr l[milltaillillg  this collllt is incrwnclltc[l.

F’inally,  we must, Ilaw some crit(!rioll dcterllliaillg  Jvllich  lmrall(!l ]incs are output,. In
o u r  cxpcrilnents,  ww }Iave silll~)ly  out~)ut t}le l)air of lmrallel lillm for ~vhicll  NW obtain  the
maximum geometric Iueall  bctwwn the llullllmr of ~)oints lying  011 the  saIIle  line as t,hc
d is t inguished  point, and the llulllhcr  of Imillts lyill~ oll a l)arallcl  lillc. lh’ote  that \ve could:
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lvithout  additional work, rcl)ort all of tile Imrallcl lilies  that, sur~mss  some t}lrt!shold ~vith
respect, to our quality measure.

II) order to improve the cfliciency of the method, ~ve elnploy  the coucept of a radius of
coherence for each I)oillt (see [4] for a similar usage). W’ith this tlechllique,  ~vc assume that
only points’ withi Il scmle  fixed radius of the distinguished point, are likely to coIltribute  to
the model and \vc cliIIlixlatc tile rwlainiIlg  poiIltls froIIl coIlsideration ill each subproblem.  111
our experiments, w! have used a radius of collereIlcc  of 100 pixels.

l’igurc  1 shows the results of applying this Iucthod to four exam~)lc  iI~~agcs.  ‘1’he first three
examples show greyscalc! vmsiolls  of scalllled  color images of pieces of unexploded ]nunitions.
‘1’he last example is a thcmnal  illlagc  of all illcrtl  Cxallll)lc  of ihc: same type of munitions. In
each case, the best se~, of ~)arallel  lillcs found  indicates the ])ositioll  of the bomb. In these
cx~)eriments,  WW2 hav[! tissulncd  that tllc best pair of ~mrallel  lillcs collll)riscd at least 4% of
the data and wc allo}vcd a probability of failuxc to d(tcct the best pair of parallel lines of
1%. With these parameters, the nunlbcr  of trials necessary is:

l’rom the analysis of s[!ction 5, w! call scc ttlat lhe colll~)lexity of t}le techniques is O(n),
\vllere n is the Ilumlmr of edge ~)ixels.  011 these vdgc illlages, cmlsistiug of betwwen 2394 and
4119 edge pixels, these t[!ctllliqum required t~c!twwell  1.17 and 1.76 sc!coIIds per illmgc o~l a
S1’AIiCstationl’L’20.

J\Je llotc that as the I)crcclltage  of outlicrs illcreascs, or llulllbcr  of ~)ixels  belonging to the
II1OCIC1  clccrcases, th[! llullllm  of trials  that is IIwessary ill this applicatiotl  imreascs  slowly
(i.e. with the logarithlll  of the fraction of pixc!ls bclougitlg  to th[! lIlodcl). ‘1’his  assuIM5  that
~vc can set sol[le lowwr bound 011 the fraction of IJixels that belong to model. h) practice this
is Ilot difficult, atld this bound cal I bc sot citller cIIll)irically or tll(’orctic;~lly  by exaxIliI]illg
the likelihood of finding a hypothesis that, lllcets  the! a(+ccptancc  criterion duc to the randoln
accumulation of data features.

7 Applications of RUDR

I{ UL)Ii has becm al)~)lied  to several additiolml ~)rol~lc~lls.  \~re reviw tllc ilnportant  aspects of
these a~]plications  here aIId discuss additioml  areas }vIIwx: llLJL)Il can bc apl)licd.

7.1 Extraction of geometric primitives

‘1’he Hough trallsforlll  is a WCI1 kno~vll  techniqllc  to extract curves and surfaces froln data by
IIlal)l)ing  sets o f  da t a  f ea tu re s  into  Illallifolds  ill the lmratllcter slmcc and then searcliing f o r

p e a k s  ill the parameter  slmce. ‘1’}10 al)l)licatioll of the 1<(11)11 t o this l)rol)lcm  improves the
eflicicllcy  of the teclllliques, allows tile localization error to lx: pml)agatd  accurately, and
reduces the axnount  of lIlcIIIoxJr  that, is rcquirc(l  [22].
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consider  the CaSC of dctf!ctillg curves frolll fcaiure ~wints ill t;vo-(liI~lt:llsic)rlzll  i]rlage d a t a .

lf we wish to detect  curves with p parwneters,  then \vc usc distilqyishcd  lnatchin,gs  consisting
ofp-1 feature poiuts, since, in general, p poiutjs  arc required to solve for the curve parameters.
Each distinguished matching niaps to a ollc-(lil~l{)llsic>llal  lllauifold  (a curve} in the! parameter
space, if the points are errorless aud ill g.ymeral  positiou. illethods  }lave been developed to
map minimal matchings with boundcxl errors into s(!glllcllts of this curve for the case of liucs
and circles [22]. If uw th[!u look for sections on the curve where nlauy of these scg-ment,s
overlap, this yields a conservative algorithm that finds all cases tvhere the! curve fits the
poiuts up to the ~!rror crit(!rion, but lImy also fiud cases where SOIIIC  of the points are not
quite fit up to the error critcrioll. ‘l}lis mcthoci allows eac}l  subproblcm  (corresponding to
a particular distinguished matchill.  g) to be. solved cfficicnltly  aud propagates the localization
error without int,roducillg  IWiILy false positives. ()(d)  time and space is required for curve
detection with these twhuiques,  where d is the llutd~er  of poillts prw!llt iu the image.

F’igure 2 shows the results of using the I< LJLIIi paradigI1l  to detect circles iu a binary
ilnagc  of an en,gilleering  drawing. All of the largx! circles are found Jvhcu the circles reported
are required to comprise at lwist 4% of the ilIlage. When this fraction is reduced to 0.8%,
not only are the pairs of dashed circles that art! pcrcq)tually  salicllt  found, but  also several
circles that arc not l)erceptually  salicnltj. ‘1’llcsc additional circles that arc fouud satisfy
the acmptauce  criterioll, so this is IIot a failllrc of tfle algorithm. Such insaliellt circles
arc difficult to elimillatlc  ~vitlhout  the usc of additiolml iuformatlion. Iu this example, the
ill~l)lcl~lc:lltatioll  fouud ouly oue circle at the locations ivhcrc concentric dashed circles were
very close togytlhcr. ‘J’llc circle fouud consists of the top IIalf of OIIe of the circles aucl the
bottjom half of the otllcr. ‘1’his  is due lmth to their proximity aud illll)crfccliolls  iu the circles.

‘1’hc robustIless of this t)cchIlique for liIle detection has beel~ compared against other
lIlet hods in a large Ilumlxx of synthetic iIl]agcs. l’our IIlethods wm[! compared:

1. ‘1’}lc IIUl>l{  paradiglll  \\ ’iL})  ~)rol)agatjcxl  ]ocalizat  ioIl error.

2. ‘lllIC RUL)l{ paradigm lvithout l)ropagated  localization error.

3. A method lllap~)il~g  lmirs of poillts i[lto th[! paralllct[!r space, but, ~~ithout  problwl
cl(:colllI)ositlioll.

4 .  ‘1’hc stlall(iard  ]Iough tlrallsform.

l’igurc 3 shows the results. h’or (!ach lllcthod, t}le l)robability  of dctectiug  the siugle correct
line scglnent prcseut,  ill the iumgc is plotted versus the probability of fiudiug  a Lalsc positive
(curved distracters wwre added to the illlag[!s)  for var~iug  levels of the threshold used to
deterlllillc which ]iuc!s are dctectjed.

‘1’hc best pcrformallcx! is ach iwcd by the l{ ULI1< paradiglll  ~vit II prolxlgation  of localiza-
tion error  into the paralnetcr  sl)acc. Illterestillgly, the IIUL)Il paradigt[l fares lmorly JV1lW
localization error  is not,
l)aradigln to propagate
foutld ill [19].

pro~)agated  carefully. It thus a~)l)cars  crucial \vhcII  using the ltUIjIl
the local izatlioIl  iIlto the ~xlraIncter spare. lurthcr details cau bc
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I“igurc  2 :  C i r c l e  dctcctliml  usiug ILUIII{.  (a) l;ugiuecriIlg clra~viug.  (b) Circles found  that,
comlJrisd 4% of the im+y. (c) l’erccptual]y  salieut circles found  that colllpriscd  0.8% of
tlhc image. (cl) I1mlicllt  circles fouud  that, coInl)rised 0.8(X of the imagw.
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7.2 Robust regression

Here  JVC collsidcr th(! a~)~)licat,ion  of 111-;L)ll to tllc l)roblcm of filldiug  the least-median-
of-squares (LMS) regression line. Iu LIblS regr[!ssio]l, the fit of the II~ode]  that I~lillimizes the
I[lcdiau residual  error  is sought,. 11’(3  tJIIllS do not us(! a bounded  error critcriol~ for this case .

\Ye  should re~)ort only the silglc best fit accordiug the Indian residual criterion.
‘lhe mos~ COIIIIIIOUly  cousidmd  problem is that< of fittiug  a Iillc! to poiuts in the plaue.

J1’e apl)ly  IiUL)Il to this problell)  by considering a series of distillguishcd ~Joillts  ill the data.
Each trial examines a sil@c distinguished l)oillt (siIlce only twm are rcquirecl  to defiue a line).
For each trial, we deterllliue  tile liue that is optimal ~vith respmt  to tile l~lediau  residual, but
~vit)h the constraint that tile lillc lIIusl pass thmugll the distill guishwl  ~)oillt.

lt cau be sho~vxt that the solution to this collstrain[:d  problelll  has a lllcdiau  resiclual  that,
is no more tfhall the SUIII of the optjimal lllcdiall  residual aud the distauc[!  of the distinguished
point from the optimal lJAIS  regression lillc [18]. Nmv, at, least half of t})e data poiuts must lie
no farther from the optlilnal  r[!gr(!ssioll  line thau the o~)tilual  m(!diau  residual (by definition).
Each trial thus has a l)rolmbility of at least 0.5 of obtaiuillg  a solutioll ~vith a r~!sidual  no
~vorsc thau twice the ol)tiI1li~l  Illcdiall  r[!sidual. ‘ll}l(! usc of r:~ll(lO1lliz:~tiO1l”  iulplios that ~ve lleed
to ~)crform only a COIIStilIlt  IlutIll~er  of trials to achimw a good solutioIl  }vith hig}l ~)robat)ilit,y.

Each subproblcm  (corr(:sl)c)llclillg  to a distinguished l)oillt) calI be solved using a special-
ized method  bawd 011 paratllet,ric search tcc}lIliques [18]. ‘1’his allmvs ead sllb~)roblem  to
bc solved exactly ill O(TIJ log~ T~) tilll(! or using  lllllll(!rical  techniques ill O(n  log n) t illle for a
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F’igum  4: ‘1’hc ItLJIIIi paradig[Il CaII be used for robust, rcgrcssioI1.

fixcxl  precisiol]  solutiml. ‘1’}Icw conlplcxitics  are Ioww tllall t h o s e  for the best k[mvll csact

algorithms for this problem and these algorit}llIls  yield boulIds }vith high probability 1311 tlhc

quality of the solutioll, ulllikc  prt!vious a~)~)rc)xi]ll:~tic)ll  algorithms. ‘llles(; tcchlliqucs cau a lso

be extended to higher  diulcmionsj  with a~l illcrcascd com~)utationa]  colllplmity.
ligurc 4 shows tww cxampl(!s where ItlJLl}<  )vas used to perforln approximate  least-

llle[liall-(>f-squares regression. 111 these Cxaulp](!s, tht’rc wc!rc 300 illlicrs wld 1 0 0  outlicrs,
both  froln t~~t>-di111e11sio11211  Gaussiau  (listriljllticllls.  A very sood til)lJrc)xilllatioll to the  3 0 0
illlicrs is obt)aind  ill both cases. our belicllI[larks  slIo\v tlIat. this tccl]I1iquc CaII p r o c e s s
100,000 data ~)oint,s in uudcr a xIlillutc  on a SI)~~l{Cst:ltic)ll’1’i120.

7.3 Object recognition

‘llc a~)l)lication  of the l<l_JI~Il  paradiglu  to object r~xx)gllitioll  has bccll  cx~)lorcd  ill [20, 23].
‘1’hc u s c  o f  RLJL)l{  yields  au algoritllIIl  w i t h  O(l/Idk)  coII~l)lltatic)ll:~l  coIn~)lmity,  ~vhere  7)1 i s

tl]e nullll]m  of model fcatur(!sj d is th(! uulnlmr of data feat urcs, aud k is tllc millilllal  number
of feature  matches ncccssary to constrain the ~)ositiou  of the lIIodcl up to a fiuitc ambiguity
ill t}lc  case of errorless features iu gcu(!ral ~)osit,ioll. ‘1’tlis is the lowmt complexity that, has
bccu achieved to pcrforlll general object r(!cogllitioll  using  the gcolllctry  of the data features,
Ivithout additiollal  iuforllmtioll.

‘1’hc ~llcthod  used in [20, 23] to solve each sub~)rol)lem is a Illulti-clilll(:llsiollal  histogralu-
nliug proccdurc  that allolvs clustlcrs to bc deter[nincd cfliciclltly  iu the S])ilCr!  of ~)ossiblc  model

posi t ions  us ing litltlc  nlclnory. ‘1’his reslllts  ill all  a])~)roxiIIl;ltioll”  algorit,}lIIl,  so the I[latc])iugs

that,  arc found, arc! Ilot lleccssarily  those that, Iuwt the dcfilIed acc(!~)tauc’c  criterion. Breur]’s
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l’igure 5: RecoguitioIl of occluded t\~(l-clilIl[:llsicJll:il  objects. (a) ‘llIc comers  detected in the
ilua.gc.  (b) ‘lhe  best hypotheses found for the occluded objects \Yitl~  the edges dra~vn in.

adaptive subdivision of tr:illsfc)rIIlat)ioll  space I[lcthod  [3] or ~ass’s trallsf(>rIIlatioIl  coIlstlraiIlt
analysis [6] can be used to solve tfhc subpmblmus  tvhe]l g(!ometricall>.  precise results are
ncccssary.

Figure  5 shows all exalil~)le  where the I{ ULlli lmradigl]l  ~vas used to recogIlizc  occluded
t}vo-climmsional  figures by matching feature ~miIlts. ‘1’hc partial occlusion of t}le objects
slid the distracting features from other objects did not l)revcnt  th[! metlIod frolll recognizing
tllle objects of interest. l~igurc (i shows all exaItlplc  of tllc recogyit  ion of a tllr[:e-clill\(:Iisioxlal
ol)jcct,  ~vhmw self-occlusioIl is prescmt.

7.4 Motion segmentation

ll~ljlt c,au bc used ~vitli  auy t e c h n i q u e  for dct[~rlllillil~g  s t r u c t u r e  al~(l lllotiol]  frolll corre-

sponding  data features iIl mult,  ip]c iImgcs  (SC!C [10] for a r[!vietv of such t,cchIliques)  to perform
motion  s(’gIIlcIlt)atl  icJIl. 111 this l)roblcIrl NW are give]l  sets of data fwt,ures ill multiple images.
h’or IIO\Y, we assume that wc know the feature ((Jrr(!sl)(>ll(lt:Ilc[:s  b[lvwc~l iI[lagcs (e.g. from a
trackiIlg mecllaI~ism),  but, w’e do not knoiv }vhich  s(!1s of f(!atures bcloIIg to cohcrcnt oljjccts.

lJet us say that<  \ve haw au algorithIIl to d(!temlill[ structure aIId lI~otioll  using  k feature
corresljc)Il(lcIlc(!s  iu 2 imag~!s  and that, there art! d features for }vhich Jve kumv the corrcspoll-
dcllccs  lx:t)~vecn  the ilnagm. V/c exauiinc distill~uishcd xImtclliIigs  of si7,e k – 1 ill the liUL)li
~)aradiglll  (i.e. k – 1 sets of fcatum  corresi)oll[lcllct’s”  l)t:tlvccll  the illlagcs),  Each sul)~)rolllcm
is solved by determining the hypothetical structure aIId IIiot, ioIl of cac,}I IIlilliIllal xIlatchiug
(k sets of featur[! corr[:sl]c>I1d[~llces)  coIltaining the distinguished Iuatching  aucl then dcter-
Illilling }Iow many of the lIli Iii IIlal ruatcl]illgs  yield coIlsistcIlt  st ruc[ur(’s for the distinguished
set, aIId Iuot, ions that arc collsistentl  Jvith tl)el[l l)clollgillg  to a single ol)j(’ct. ‘lllis is rcl)eated
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l’igure  6: Rcco,gnitioIl  of a t}lr[:c-(lilIlcllsioIl:ll  objcc[. (a) ~orners  d e t e c t e d  in t h e  image.  (b)

Best hypothesis found (tvitlh edges drawm iu).

for enough distinguished matchings to find all rigidly  lllovillg objects consisting of some
IrlinimuIIl fraction of all image features.

Our analysis for implicit mat4chi11gs  iulplies  that< }VC Illust  cxaIuiIm  ap~JroxiInatdy  (1-  k 1x1 +

trials to find objects whose fraction of the total  nullIl~cr  of data feature is at least 6 ~vith a

]Jrobabilit,y  of failure for a Imticular  object, I1O larger thau  ~. l’or fixed ~, c, and k this is a
col~stant  numbm  of trials  a]ld each trial can be l]crforlllcd  in O(d) time  using histogrammiug.

‘1’hjS pI_O~)lCIH  jS HIUCh  mm! djffiCU]L  i f  w’(! dO IIOt kuotv the C(~rl[lsl)OIICIC1lCes  betNW!ll
ixtlagcs.  Ill t h i s  c a s e ,  Iv[! c o u l d  s e l e c t  a distill~uislld  set of })oil~ts fmxl~ olic of the illlagcs

aud consider every possible set of matches ill the o(}icr iluages. ()(~(k- I)(i- 1) ) distinguished
matlchillgs  would be exalniu(!d. l’or each of distinguish[!d  Illatchillg,  \vc examille  O(d’) mill-
illml matchiugs. ‘lhc total  rulllliug tiluc }vould  t h u s  bc O(di~-  k l). 11) l)ractice,  some ad-
ditional  illformatioll  or collst,raiut  should k: us(!d to reduce the llull~l)c!r  of lnatchillgs that

IIlust be examiud  M’]ICII  t h e  Hlatchcs  bctw’[!cll iIIlag(!s  arc Ilot k]lmvn.

8 Summary

‘1’tlis paper  has described a lic~v algorithmic paradigrll called liLJl~ll for solving model extrac-
tion and fitting  I)roblclns  suc]i as rccognitioli  and rqqrcssioll. ‘1’llis paradigI1l is wry .gcrleral
al~d call be applied to a lvidc variety lm>blems  }y}ler(:  a lnodc]  is fit to a set of data features

a u d  it is tolcraut, to noisy  data feat) urcs, occlusion,  slid outlicrs.

‘1’he ItULIIi ~~aradiglu  dra~vs aclwutag(!s  frol[l lmt h the gt~l~t’rtit(’-t~  l~cl-t,~:st  paradigln  al~d
froul parameter  sl)ace nlctlhods  based 011 t,hc lloug}I trallsforlll.  ‘1’hc lwy ideas arc:

]. Break dow’11  the 1)1’oblmll  into II]ill]~  sI1l;lll SU~)l)lO})lC’ills t}lat  [!xalliillc oIIly tile xllodel
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2.

3.

positions consistent ~vith solllc distinguished lllatchiu,g  of features.

Use randomization techniques to limit the number  of subprobl(!ms  that need to be
examined to guarantee a lo~v probability of failure.

Use clustering or ~Jarameter space analysis techniques to dctcrnline  large sets of the
minimal matchings that include the distinguished lllatching that can be brought into
aliglmlen~ up to some error criterion by a single Iuodcl  position.

‘1’his dccompositjioll  of the problem yields  au equivalent formulation of the recognition
problem when perfect,]y accurate techniques are USN] to solve the problems and it, allows
the subproblcms  to be solved efficiently with accurate error propagation, ‘i’he aclditiollal  use
of randomization yields substantial gains in efficicucy, offset, by a snlall  probability that, a
matching that meets the acceptance criterion could  bc missed.

The use of this para(ligln  yields ttvo priluary  adwultagm  over pr(!vious gellcrate-and-test
or Hough-based  methods. First, the efficiency of tl}lcsc  techniques is superior to previous
methods to solve this class of recognition and matching  ~)roblems and tht! mmllory  required
by these techniques is 10IV. Second, methods b~’ which the localization errc)r of data features
call bc ~)ropagatwl  accurately without reporting lllatchcs that, do not ]n[!(!t the acceptance
criterion are possible through the usc of these tmlllliques. III additjioll,  these tcchxliqucs
can be easily parallelized  by mapping the sub~)roblelt~s  that are comidercd  onto the set of
~)roccssors that am available.
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